M1. (a)	Peak	power = 107 / 108 mW and load resistance = 290 / 310 Ω 🗸	1
		Use of power = $I^2 R$ with candidate values \checkmark	1
		0.0186 – 0.0193 A ✓	1
	(b)	Area of cell = 36 x 10 ⁴ m ² and solar power arriving = 730 × (an area) \checkmark	1
		0.108 2.63 seen√	1
		0.041 (correct answer only; lose if ratio given unit) 🖌	1
	(c)	energy of one photon = $\frac{hc}{\lambda}$ = 4.0 ×10 ⁻¹⁹ J \checkmark	1
		Number of photons = $\frac{730 \times 36 \times 10^{-4}}{4.0 \times 10^{-19}} = 6.6 \times 10^{18} \text{s}^{-1} \checkmark$	1
	(d)	Two from Intensity of the sun at the Earth's surface	

Average position of the sun Efficiency of the panel Power output of 1 panel Weather conditions at the installation= **** \

Allow other valid physics answers=

2 [10]